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A one-dimensional model is derived for natural convection in a closed loop. The 
physical model can be reduced to a set of nonlinear ordinary differential equations 
of the Lorenz type. The model is based on a realistic heat transfer law and also 
accounts for a non-symmetric arrangement of heat sources and sinks. A nonlinear 
analysis of these equations is performed as well as experiments to  validate the model 
predictions. 

Both the experimental and the analytical data show that natural convection in a 
loop is characterized by strong nonlinear effects. Distinct subcritical regions are 
observed in addition to  a variety of stable steady flow regimes. Thus, in certain 
ranges of the forcing parameter the flow stability depends significantly on the 
presence of finite perturbation amplitudes. An absolutely unstable range also exists 
which is characterized by a chaotic time behaviour of the flow quantities. It is also 
shown that the steady solutions are subject to  an imperfect forward bifurcation if 
heating of the loop is performed non-symmetrically. In  such a case one flow direction 
is preferred a t  the onset of convection and, moreover, the corresponding steady 
solution is more stable than a second, isolated, steady solution. The second solution 
has the opposite flow direction and is stable only in a relatively small, isolated 
interval. The preferred steady solution becomes unstable against time-periodic 
perturbations a t  a higher value of the forcing parameter. A backward- or a forward- 
directed bifurcation of the periodic solutions is found depending on the non- 
symmetry parameter of the system. 

1. Introduction 
Natural convection in closed loops sometimes plays an important role in the design 

of thermal energy systems, such as solar heating systems and nuclear reactors. The 
configurations of these systems are characterized by an arrangement of a heat source 
together with one, or several, heat sinks positioned a t  some height above the heat 
sourcc. These components are usually connected by pipes forming at least one closed 
loop. Reviews of natural circulation loops in engineering systems have been given by 
Zvirin (1981), Mertol & Greif (1984), and most recently by Greif (1988). 

Natural circulation in a single loop has been investigated previously by several 
authors, with the main motivation being the fundamental study of simple systems 
exhibiting typical nonlinear convective effects (see e.g. Welander 1967 and Creveling 
et al. 1975). Malkus (1972) and Yorke & Yorke (1981) have proposed a model in which 
they represent the physics of a symmetrically heated loop using a set of three 
ordinary differential equations of the Lorenz type (see Lorenz 1963). Although 
various authors have developed models for fully turbulent flow in such geometries 
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using appropriate friction and heat transfer correlations (see e.g. Creveling et al. 
1975 ; Hart 1984 ; Widmann, Gorman & Robins 1989), realistic modelling of the heat 
transfer in the laminar flow regime is still lacking. Recently Yorke, Yorke & Mallet- 
Paret (1987) have presented an approach based on a two-dimensional model. In 
particular they retain radial diffusion terms in both the momentum and the heat 
transport equation, whereas the wall temperature distribution is stipulated. 

A detailed nonlinear analysis on the effect of non-symmetric heating of the loop 
has not yet been performed : Hart (1984) does consider it briefly. He calculates the 
steady convective solutions for different values of a non-symmetry parameter, 
determines the linear stability of these solutions, and presents some preliminary 
results concerning the nonlinear dynamics of the system. A first experimental 
investigation on the effect of non-symmetric heating has been conducted by 
Darnerell& Schoenhals (1979), who presented results on the stability of the preferred 
steady flow. 

In  addition to  the convective flow in a single loop, a system of two coupled loops 
have been considered recently by several authors. Davis & Roppo (1987) have 
investigated theoretically the stability of the flow in two thermally coupled loops, 
while Ehrhard, Karcher & Muller (1989) also incorporated momentum exchange and 
carried out complementary experiments. 

In  this work we extend the model for the flow in a single loop used by Yorke &, 
Yorke (1981) to conditions of non-symmetric heating, as well as to a more realistic 
heat transfer situation. We perform this investigation by applying analytical and 
numerical mathematical methods to the model equations. In parallel to the 
theoretical investigation, an experimental programme has been undertaken in which 
temperatures and velocities have been measured for comparison with the theoretical 
results. 

Figure 1 shows schematically the experimental set-up and illustrates the problem. 
We consider a circular loop filled with an incompressible fluid. The cross-section A of 
the tube is circular and constant. The lower semicircle of the loop is heated by 
circulating coolant at a temperature TH through a jacket surrounding the tube, while 
the upper semicircle is cooled by connecting a corresponding jacket to a water bath 
a t  a lower temperature Tc. The temperature distribution a t  the tube wall is 
represented by the function Tw(rp), where Q, is the toroidal coordinate. We also allow 
for an offsetting of the heating and cooling zones by an angle, 6, relative to the 
symmetric position. The symmetric position, i.e. 6 = 0, is therefore characterized by 
imposing a high wall temperature TH in the region -in < Q, < in and a low wall 
temperature Tc in the region in < 9 < gn. 

If we increase the forcing temperature difference AT = TH - Tc in a symmetrically 
heated system beyond a certain threshold value, the initial state of heat conduction 
is replaced by a convective flow in either the positive or the negative q-direction. For 
a temperature difference AT well above this first critical value, the steady-state 
convection becomes unstable and is replaced by a time-dependent flow. Moreover, i t  
is evident that  non-symmetric heating induces a preferred flow direction. Crucial 
questions arising in this context are: What are the boundaries of stability of the 
steady convection with respect to infinitesimally small or finite-amplitude per- 
turbations! What are the particular features of steady and unsteady flow with 
respect to the present parameters ? 
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FIQURE 1 .  Principle sketch of a loop with imposed wall temperatures. 

2.1. Model equations 
2. Theory 

Assuming the internal diameter of the loop pipe to  be much smaller than its length, 
i.e. d 4 I, a one-dimensional modelling of the flow and heat transfer processes proves 
to be of sufficient accuracy (cf. Welander 1967; Yorke & Yorke 1981). Using the 
Boussinesq approximation we obtain for the cross-sectionally averaged velocity u(t), 
pressure p ( q , t )  and temperature T(q,t) in the loop the following set of partial 
differential equations : 

As a consequence of using a one-dimensional model, the equations (1) do not 
involve velocity and temperature gradients in the cross-section A of the pipe. For 
this reason we have to introduce closure conditions into the mathematical model for 
the interaction of the fluid with the wall. The corresponding terms in (1) are denoted 

Here fw represents the friction force due to the velocity gradient a t  the wall. 
Estimates, based on the stability of the flow in a straight circular tube under 
isothermal conditions, show that laminar flow exists for our geometry conditions and 
test fluid, i.e. water. For this reason i t  is appropriate to  use a linear correlation 
between the friction term fw and the velocity u :  

by f W >  h w  and Qw. 
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We also require a correlation for the heat transfer coefficient at the wall h,. It is 
known from measurements in straight circular tubes that h, is constant for small 
values of u, but varies as hw K luli for moderate values ofu in the laminar flow regime 
(see e.g. Schlunder 1981) Thus we later introduce into the analysis an asymptotic 
model equation reflecting this behaviour (see (6)). We also demonstrate the validity 
of the above correlations for fw and hw in the actual test apparatus (see $3.2). 

The right-hand side of the heat transport equation in ( 1 )  represents source terms. 
In  addition to a heat flux due to  the temperature difference {Tw(v) - T), a volumetric 
heat source qW@) may be taken into account. 

By introducing Fourier series for the pdependent functions and using a Galerkin 
method, the partial differential equations are transformed into an infinite number of 
ordinary differential equations. In detail we use the expansions 

for the temperature distribution T(q,t) inside the loop and the source term &(v) in 
the heat transport equation, where 

We introduce the dimensionless variables of state xi and time t’ as 

where y is the coefficient of thermal expansion, c p  the specific heat, po the reference 
density, h the heat conductivity and 9 the acceleration due to gravity. Furthermore, 
we use the following constitutive relation (see e.g. Schlunder 1981) for the heat 
transfer : 

As a result we obtain a set of coupled ordinary differential equations in time for the 
velocity x1 and the coefficients of the temperature distribution (x2, x3, . . .) in the loop 

= a[x2 -4, 
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To be complete we finally give the zero-order equation 

which describes the mean temperature in the loop, xo,  established via a vanishing 
exponential function. For all further experimental and analytical procedures x,, is 
assumed to be already steady, i.e. 

In  (7a-c) xi denotes the derivative of Z( with respect to t ' .  

the wall friction coefficient to the heat transfer coefficient a t  the wall: 
There are five dimensionless groups in (7a ,  b ) .  The fluid/wall parameter a relates 

To a certain extent this group is comparable to the Prandtl number in ordinary 
viscous flow and depends on the transport coefficients for heat and momentum 
fwo, h,, and the fluid properties po, c p .  The heating rate P represents the balance 
between work of buoyancy forces and overall losses of energy, caused by losses of 
heat and momentum : 

p = E(6!6!YRl .  
fwo1 hwo 

This parameter is directly proportional to the forcing temperature difference AT and 
comparable to the Rayleigh number in the BBnard convection problem. The angle S 
relates the odd modes of the source term Q(q)  to the even modes: 

This relation characterizes the symmetry of the heat transfer to and from the loop. 
The group A/(Z2hwo) accounts for the influence of the heat conduction within the fluid. 
It can be shown that, because h/(Z2hwo) Q 1, this contribution to the overall heat 
transport along the p-direction may be neglected even for media with low Prandtl 
numbers. This result is equivalent to the approximation made by other authors who 
neglect the conduction term in the basic heat transport equation and assume that 
convection dominates (see e.g. Welander 1967; Creveling et aZ. 1975). The nonlinear 
closure condition for the heat transfer coefficient hw (u), equation ( 6 ) ,  is characterized 
by a constant K ,  which may be determined experimentally. In  the higher-order 
equations (7 b ) ,  the contribution of the source term Q(q) (see equation ( 3 ) )  due to the 
Fourier mode n is given by the dimensionless groups 

pn=- (  Y9 pocp )'Qn and 
fwo 1 hwo 

On examining the structure of (7a ,  6 )  we see that the motion of the fluid, described 
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by the velocity amplitude xl, is related only to the first mode of the temperature 
distribution characterized by x2 and x3. Thus, the first three nonlinear equations (7a )  
can be solved separately, and these completely determine the structurc of the 
solutions. However, if a more detailed temperature distribution is required, the 
higher-mode equations ( 7 b )  must be solved. Knowing the solutions for X ~ , ~ ~ , X , ,  the 
differential equations for the higher-order amplitudes xZn and x2n+1, n > 2 ,  are linear 
and can be solved successively. The decoupling of the first three equations (7a)  has 
also been noted by Yorke & Yorke (1981). Likewise, Hart (1984) separated the 
problem into a so-called master problem for the first basic mode and adjacent slave 
problems for the higher-temperature modes. If we neglect the heat conduction in the 
direction of the tube axis then we have to solve the following equations: 

I 5l = a[x,-x,], 

x2 = P ~ c ~ - ~ ~ [ I  + ~ ~ x , ~ f ~ - x ~ z , + ~ t a n ~ ,  

x3 = xlXz-23[1 +K1x1p], 

in order to obtain the velocity amplitude xl. 
For the case of symmetric heating with S =  0 and constant heat transfer 

coefficient, i.e. K = 0, the above system of equations (8) is identical with the Lorenz 
equations, which approximately describe convection in a horizontal liquid layer 
heated from below and cooled from above (Lorenz 1963). 

2.2. Solution procedure 

We first determine steady solutions xSt to (8) and then we investigate their stability. 
In order to do this, we introduce small time-dependent perturbations into the system 

~ 

of the form 
x(t’) = x,+ ax,#’), (9) 

with ISx,,l + 1 ,  and linearize in Sx,,. On introducing exponential functions for the 
time-dependent variables in the form Sx,, cc exp (ut‘), we obtain an eigenvalue 
problem for the amplitudes of the disturbances, with the temporal amplification 
rates u as the eigenvalues. By computing the eigenvalucs, conclusions can be drawn 
concerning the stability bounds of all the different steady states. 

Naturally, the nonlinear properties of (8) cannot be revealed by this linearizing 
procedure, The presence of finite-amplitude disturbances requires the solution to the 
fully nonlinear equations. The complete set of periodic solutions is obtained 
numerically by using a multiple shooting method. We solve the related boundary- 
value problem for (8) which results from applying the periodicity condition 

where 7 is the time period of oscillation. The numerical procedure starts with an 
estimated set of solutions and shooting parameter 7 and then solves iteratively the 
fully nonlinear equations (8) in the interval 0 < t’ d 7, subject to the given boundary 
conditions (10). We keep the parameters (a, /3,6, K )  fixed while solving the boundary- 
value problem. For a discrete value of 7 solutions may be found. Then a continuation 
algorithm traces the solutions using the computed solutions and shooting parameter 
7 as new estimates for the next adjacent calculation, i.e. a t  a slightly varied set of 
parameters (a, p, 6, K>.  With this method the nonlinear solutions are computed 
effectively for varied parameters ; in particular, the results presented below are 
computed for varied /3, The basic idea of this solution procedure has been suggested 
by KubiEek & Marek (1983). 
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FIGURE 2. Bifurcation diagram for symmetric heating in terms of the velocity in the loop (a = 15, 
6 = 0, K = 0) ; solid lines represent stable steady branches, 0 mark stability bounds, dotted lines 
give amplitudes of periodic solutions. 

In  detail, we use a multiple shooting algorithm to solve the boundary-value 
problem, which employs a fourth-order Runge-Kutta integration procedure. In  the 
continuation algorithm, in order to trace the calculated solution branches, a Fourier 
series representation of the nonlinear periodic solutions of 64th order is employed. 

Having determined these solutions we perform a linear stability analysis by 
imposing small perturbations on the periodic orbit. We evaluate the conditions of 
stability for the periodic solutions with the aid of Floquet’s theory (see e.g. Joseph 
1976). This is done by calculating the Fioquet multipliers numerically, since the 
nonlinear solutions have no analytical representation. Therefore a numerical 
integration procedure (fourth-order RungeKutta)  is again employed to compute the 
monodromy matrix. 

2.3. Results for symmetric heating 
Although there is a vast amount of literature on the properties of the solution of the 
symmetric Lorenz equations (see e.g. Sparrow 1982), we present here solutions for a 
set of parameters appropriate for a comparison with our experimental results 
reported in $3.3. We obtain solutions for the case of symmetric heating by setting 
S = 0 in the model equations (8) and using the solution procedure outlined in $2.2. The 
results are compiled in figure 2, where the flow velocity, xl, is plotted versus the 
heating rate /I. For reason of clarity the numerical solutions are presented here in a 
comprehensive way only for a constant heat transfer coefficient h, (K  = 0) and a 
constant fluidlwall parameter a = 15. The influences of a more realistic heat transfer 
law, (6) and K += 0, and variable a are discussed in detail in $2.5. Results for the data 
set a = 15,K = 0.35, relevant for our experiment, are used for the comparison 
between experiment and theory in $3.3. 

Starting from the isothermal situation, corresponding to /3 = 0, we find for low 
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values of p only the zero solution, i.e. the state of rest. At p = p” = 1 two convective 
solutions branch off symmetrically from the zero solution in the direction of 
increasing p. This type of branching is usually termed a perfect forward, or pitchfork 
bifurcation. Thus, in the range 0 < /3 < the model equations (8) possess a solution 
without motion. We call this a ‘conductive solution’, since physically heat is 
transported only by diffusion, although this mechanism is not included in the model. 
The forward bifurcation at /3 = p” implies the loss of stability for the conductive 
solution with velocity amplitude x1 = 0, and the emergence of two stable convective 
solutions for p > with flow in either the clockwise or counterclockwise direction. 

If the heating rate /3 is increased further we find that a t  p* = 21.92 these steady 
solutions become unstable with respect to oscillatory disturbances. At this stability 
bound periodic solutions branch off from the steady solutions. We call this particular 
branching point a Hopf bifurcation point or in short a Hopf point (see Hopf 1942). 

We find from a nonlinear stability analysis (Ehrhard 1988 ; see also McLaughlin & 
Martin 1975) as well as from direct numerical evaluation of (8) that the r-periodic 
solutions have growing amplitudes for decreasing values of the heating rate p 
starting from p*, i.e. the bifurcation is backward. A so-called homoclinic orbit occurs 
for a value PH0 = 9.4. For this particular heating rate the amplitude of the respective 
periodic solution approaches the value x = 0 of the stationary unstable conductive 
solution. As the value pHo of the periodic solution is approached from values p > 
BHo, the period of oscillation tends to infinity. Owing to the symmetry of the r- 
periodic solutions the above phenomena occur simultaneously at  both 7-periodic 
orbits. This configuration and its structural implications are commonly denoted as 
a homoclinic bifurcation point or homoclinic explosion (see Sparrow 1982 or 
Guckenheimer & Holmes 1983). It turns out that embedded in a ‘strange invariant 
set ’ of solutions a countable infinite number of subharmonic periodic solutions 
originate from this homoclinic bifurcation point. They exist for increasing values of 
the heating rate p. We have calculated the periodic solutions up to the order 87. To 
allow a clear presentation only the calculated solutions of lower order, denoted by 7, 

27, 3r+ and 3r-, arc given in figure 2 .  While the 27-periodic solution proves to be 
symmetric with respect to the x1 = 0 line, 3r+ and 37- denote two different mirror- 
symmetric 3r-periodic solutions. The 3r-periodic solutions are found to disappear as 
the heating rate p increases prior to the Hopf point, i.e. for a value /3 < /3*. This can 
be seen in figure 2. Employing Floquet’s theory we find that the computed periodic 
solutions are locally unstable in the investigated parameter range. 

Our findings concerning the set of unstable periodic orbits existing to the right of 
the homoclinic bifurcation point, i.e. for values p > pHo, as well as the disappearance 
of periodic orbits as the control parameter p is increased, are consistent with results 
of several authors, who employed direct numerical integration and different 
parameter sets of the Lorenz system. Namely Robbins (1977) and Sparrow (1982) 
present results for the sets (a = 5,  b = 1)  and (a = 10, b = $) while we use the set 
(a = 15, b = 1). In  addition they infer the existence of an infinite set of unstable 
aperiodic orbits and an infinite set of trajectories terminating a t  x = 0 within the 
strange invariant set. Together with the set of unstable periodic orbits these form a 
dense bundle of trajectories in the phase space, existing for values B 2 pHo. Sparrow 
concludes that all these members of the strange invariant set are individually 
unstable in the sense of Liaponov in a certain parameter range pHo < p < p*. The 
above authors furthermore infer from their calculations that the strange invariant 
set becomes a ‘strange attractor’ for increasing values of /3 prior to the Hopf point, 
i.e. for some value /3 < /3*. As a consequence of those findings one would expect the 
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time behaviour of the system to be chaotic even in the limit t + co within this range, 
provided a finite-amplitude disturbance has forced the system to leave the vicinity 
of the steady flow. The strange attractor thus attracts and confines the system to a 
dense set of unstable states independent of the initial conditions. Holodniok, 
KubiEek & Marek (1982) have performed similar calculations by a numerical 
continuation method, but for the parameter set (a = 16, b = 4). Their results on the 
set of periodic solutions are consistent with our results. 

The awareness of these unstable periodic solutions and, moreover, of the complete 
strange invariant set in the neighbourhood of steady stable branches leads us to 
evaluate the system behaviour when finite-amplitude disturbances act on it. We use 
here the definitions of 'stability of solutions' according to  Joseph (1976). The system 
is absolutely stable in the range 0 < /3 < $, since only the stable conductive solution 
exists. Furt)hermore, we conclude that a conditionally stable steady flow occurs in the 
range p" d /3 < /Po, since two stable steady convective solutions coexist in this range 
and a transition from one to  the other may be induced by finite-amplitude 
disturbances. In the range p"" < p < p* the time history of the flow can exhibit a 
more complex behaviour. In  this range sufficiently small perturbations of the steady 
solutions will generally be damped away according to the predictions of a linear 
stability analysis. However, if a finite-amplitude disturbance exceeds a certain 
critical value a time-dependent flow will occur in the loop. This flow will generally 
exhibit irregular, so-called chaotic oscillations (see Sparrow 1982), which typically 
involve flow reversals. Therefore, in this range the steady solutions are, even 
individually, only conditionally stable. Here the onset of an unsteady flow induced 
by finite-amplitude disturbances is related to the backward-bifurcating unstable 
Hopf solution and to the unstable strange invariant set, involving the unstable n7- 
periodic solutions ( n  > 2). The steady solution is usually called subcritically unstable 
and the region where this occurs is termed the subcritical region. We shall call the 
temporal behaviour of the system in this region transient-chaotic following the 
terminology of Gorman, Widmann & Robbins (1986). This feature can be explained 
by the wandering of the solution on the strange invariant set, including the rare 
event of spiralling into the stable steady branch in the long term, i.e. in a strict 
mathematical sense, in the limit t '+ co. Following Robbins (1977) and Sparrow 
(1982) a strange attractor is formed when the duration of the chaotic wandering 
tends to  infinity with increasing values of p. This is typically achieved, as outlined 
before, in a small range prior to the Hopf point, i.e. for a value p < p*. Thus the 
subcritical region PH0 < p < p* may be subdivided, depending on whether or not the 
system will spiral into the locally stable steady solution in the limit t+ ot). 

A fully chaotic time behaviour of the convection is to  be expected for the 
parameter range /3 > p* where, apart from the multiple unstable periodic and 
aperiodic solutions and the unstable steady solutions, the strange attractor is 
continued. As a consequence the physical system should exhibit chaotic velocity and 
temperature histories featuring flow reversals at irregular time intervals. 

The above description of the stability behaviour of the system in various 
parameter ranges agrees largely with results of Robbins (1977), which Gorman et al. 
(1986) have compared with experimental results. Given our results on the set of 
multiple unstable periodic solutions and locally stable steady solutions in the 
subcritical range, i.e. Pno < /l< /?*, we are not able to provide information on 
whether the strange invariant set exhibits an attracting character within a small 
subregion. Sparrow (1982) suggests that  the structure of the strange invariant set is 
changed by removing periodic or aperiodic orbits as the control parameter p 
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increases. In particular he associates the disappearance of periodic orbits with new 
' homoclinic explosions '. One might therefore speculate whether the disappearance of 
the 37-periodic solutions as found prior to the Hopf point (see figure 2) indicates this 
change in the structure of the strange invariant set. Interesting though such 
questions might be mathematically, we consider the physical consequences in finite 
observation times and in real test facilities as practically identical. Therefore we do 
not subdivide the subcritical region when comparing our theoretical and ex- 
perimental results. I n  contrast Robbins does so, calling the regions ' transient 
subcritical' and 'subcritical'. We compare the 'critical' values of p obtained by 
Robbins with our stability bounds in 94. 

2.4. Results for non-symmetric heating 
In  this section we discuss the theoretical results for a non-symmetric arrangement of 
the heat sources and sinks. In this case we solve (8) for values 6 + 0. For reasons of 
simplicity we still assume K = 0 and keep a constant in order to deal with a one- 
parameter problem only. The results of the calculations are shown in figure 3 for two 
different angles of non-symmetry, 6 = 5" and 6 = 15". 

There are two steady convective solutions shown in figures 3 ( a )  and 3( b )  : as a 
result of the non-symmetry, convection exists for any /3 =I= 0. For 6 > 0 the fluid will 
preferentially circulate counterclockwise, i.e. in the positive cp-direction, since the 
corresponding solution branch varies continuously with increasing heating rate /I, 
beginning at p =  0. We call this solution branch 'preferred'. Physically, the fluid is 
rising at  the one-sided extended heated zone of the loop determined by the sign of 
6. The steady solution describing clockwise convection, i.e. a flow in the negative cp- 
direction, is not connected to the preferred solution branch. This solution branch is 
called 'isolated '. In an experiment, or in a direct numerical simulation, this solution 
can only be obtained in a transient manner, for example by imposing large initial 
perturbations of the heating rate or the momentum on the system. The situation 
described above is usually termed an imperfect forward bifurcation of the basic state. 

The two steady solutions lose their stability to infinitesimally small oscillatory 
perturbations for higher heating rates. The bounds of stability for the two steady 
convective solutions are different. The bound PT of the isolated solution corresponds 
to a low heating rate, while the bound of the preferred solution p: represents a 
considerably higher heating rate. The non-symmetry clcarly causcs a stabilization of 
the steady convection in the preferred direction. 

The stability analysis for the steady solutions shows that the stability bounds p: 
and &! are bifurcation points for periodic solutions, i.e. Hopf points. A nonlinear 
stability analysis in the yicinity of the Hopf points (see Ehrhard 1988) and the direct 
numerical evaluation of the nonlinear system (8) both show that the periodic 
solutions may branch off from the preferred steady solution in forward or backward 
directions, depending on the size of the non-symmetry parameter 6. In  contrast, we 
find that a backward bifurcation of the periodic solution always occurs on the 
isolated branch of the steady solutions. These features are demonstrated in figure 
3 ( a )  with 6 = 5" and figure 3 ( b )  with 6 = 15". 

The numerical calculations give that, in the case of backward-bifurcating 7-  

periodic solutions, the amplitudes increase as the heating rate decreases. We find a 
homoclinic orbit a t  a particular value ,8 = pHo a t  which the amplitude of the 7-  

periodic solution, branching off from the isolated convective solution, approaches the 
unstable steady solution with x1 w 0. Simultaneously the period 7 of the oscillatory 
solution tends to infinity as pHo is approached from higher values of p. A stability 
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FIGURE 3. Bifurcation diagram for non-symmetric heating in terms of the velocity in the loop : (a) 
S = 5", (6) 6 = 15' (a = 15, K = 0 )  ; solid lines represent stable steady branches, 0 mark stability 
bounds, dotted lines give amplitudes of periodic solutions, connected dots mark stable ranges of the 
periodic solutions. (Theoretical stability bounds: (a)  pr = 15.6, /?: = 30.40, pH" = 6.8; (6)  /3? = 
7.27, /3: = 56.91, b"" = 4.06.) 
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analysis shows, moreover, that the periodic solution in this range p"" < is 
locally unstable while the steady solution is conditionally stable with respect to 
finite-ampli tude disturbances. 

For moderate values of the non-symmetry parameter 6 the r-periodic solution 
branching off backwards from the preferred steady convective solution develops a 
limit point a t  a value p"' = 26.8, where the solution branch changes direction. This 
can be seen in figure 3(a ) .  The stability analysis shows that the r-periodic solution 
is unstable to infinitesimally small disturbances on the backward-directed part of its 
branch in the range p"'<p</3;, but stabilizes at the limit point. The stable 
character is maintained on the forward-directed part of the branch until, at a value 
/P, a subharmonic 2r-periodic solution bifurcates from the ?-periodic solution. While 
the r-periodic solution loses stability, the 27-periodic solution is stable until, a t  an 
even higher value p, a 4r-periodic solution branches off from the 27-periodic one. 
Increasing ,i3 more and more we find a set of 29-periodic solutions (n 2 i ) ,  each 
member of which successively loses its stable character a t  the next bifurcation point, 
where another higher-order subharmonic solution occurs. In  other words, we find 
that the subharmonic solution of highest possible order a t  a particular value of the 
heating rate ,d is stable. The above situation is commonly also referred to as a 
' period-doubling sequence ' (see e.g. Sparrow 1982). 

The numerical calculations have been performed up to the 167-periodic solution 
and one result is that the interval length ApS2(n+" = ,@2(n'1' - pan between successive 
bifurcation points diminishes with increasing n. We therefore conjecture the 
existence of an accumulation point for the cascade of subharmonic bifurcations at  a 
finite value of the control parameter p, denoted by the value PA'. This accumulation 
point appears a t  some distance from the first subharmonic bifurcation point as the 
heating rate is increased. For heating rates p > PAP we expect an irregular, chaotic 
time behaviour of the system, since the system exhibits an infinite number of 
unstable periodic and steady solutions. 

The above sequence of bifurcations, when the distance between bifurcations is 
rapidly decreasing, has been described generally by Feigenbaum (1980). He claims 
that the ratio of distances of successive bifurcations is governed by a geometric series 
of ratio f,. Thus within the bifurcation sequence the ratio 
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should rapidly converge for increasing n to the fixed value f, = 4.669.. . . We find 
from our sequence fi = 4.48, fi = 4.62. Thus, using the universal constant f m ,  we can 
evaluate the position of the accumulation point as PAP = 30.59. 

From our numerical investigations we infer that stable time-periodic solutions 
exist in the interval between the limit and the accumulation point, p"' < p < PA'. 
This stable 'window' is indicated in figure 3 by thin solid and (simultaneously) 
dotted lines, corresponding to stable periodic solutions. For clarity only the first 
three stable periodic solutions of the subharmonic cascade are shown, denoted by 7,  

27 and 47. Figure 3 (a )  also shows the calculated 37-periodic solution. This unstable 
solution is not connected to the 2"~-periodic solutions in the range of parameters 
investigated and exists for heating rates p > PA'. 

The situation of strong non-symmetry, characterized by S = 15", is displayed in 
figure 3 ( b ) .  The bifurcation of the r-periodic solution a t  the Hopf point p = p: is 
forward-directed. Thus, there is no range with subcritical instabilities. Beyond the 
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stability limit /3: of the preferred steady flow a stable periodic solution exists in the 
range P: < /3 < PA'. The upper bound of this range is - as in the previously discussed 
case of 6 = 5' - assumed to be given by an accumulation point PA' of a cascade of 
subharmonic bifurcations. I n  this case, according to Feigenbaum, we find the ratios 
f, = 4.28 and fi = 4.52, and the position of the accumulation point is eva,luated as 
PA' = 100.02. The range /3 > PA' is absolutely unstable as in the case of moderate 
non-symmetry. I n  the sense of Gorman et al. (1986) this range can also be 
characterized as a range of globally attracting chaos. The numerical investigations 
indicate that there is a continuous transition from the backward- to the forward- 
directed bifurcation of the periodic solutions when 6 is increased monotonically from 
zero. 

In summary, for the case of a moderate non-symmetry in the system (see figure 
3a) ,  we find the following phenomena : 

(i) For a continuous small variation in the control parameter /3, a stable steady 
flow in one preferred direction always occurs. This flow is absolutely stable, i.e. with 
respect to disturbances of any size, in the range /3: < /3 < p"'. For values p < PT 
large disturbance amplitudes may cause a transition to the isolated steady solution. 
In  the range between the limit point and the Hopf point, i.e. for values pLp < /3 < 
/I:, the preferred solution is conditionally stable, since finite-amplitude disturbances 
can drive the system into a stable or unstable nr-periodic oscillation depending on 
the parameters 6 and p. For heating rates beyond the accumulation point a t  values 
P > PA' the system will fall into chaotic behaviour, in which the time-average values 
of the variables of state xi are shifted towards the value of the respective unstable 
steady solution. 

(ii) I n  order to establish a steady convective flow described by the isolated branch 
of the solutions, disturbances of large amplitude have to act on the system. This 
solution is only conditionally skable with respect to  finite-amplitude disturbances, 
since a stable steady branch as well as the unstable r-periodic orbit coexist. For large 
disturbances the system will therefore undergo a subcritical transition to the stable 
steady flow of opposite direction. 

For the case of a strong non-symmetry in the system (see figure 3b) ,  we find a 
forward-bifurcating stable r-periodic solution a t  the Hopf point of the preferred 
steady solution. Therefore no subcritical instability will occur. This implies that  the 
preferred steady solution is absolutely stable in the whole range PT < /3 < p,* and a 
locally stable periodic behaviour will occur for /3: < P < PA'. 

2.5. Influence of fluid and wall properties 

The mechanical and thermal properties of the fluid and the tube walls enter the 
dimensionless model equations (8) in form of the parameters a and K.  We emphasize 
that we have neglected the heat conduction in the flow direction. In  a detailed 
analysis, Ehrhard (1988) has shown that heat conduction in the toroidal direction 
has an effect of negligible magnitude on the lower modes of the temperature series 
expansion (3). These modes determine the large-scale temperature variation along 
the loop and the flow velocity depends only on the lowest of those modes, i.e. on XI 
and C, (compare (7a) ) .  He finds, however, a considerable effect on the higher modes, 
which describe the fine-scale structure of the temperature distribution in the loop. 

We first discuss the influence of the fluid/wall parameter 01, which can be 
considered as a modified Prandtl number. It can be seen from (8) that  the steady- 
state solutions do not depend on the fluid/wall parameter a. There is, however, a 
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FIGURE 4. Stability diagram for the onset of time-dependent flow for symmetric heating (8 = 0') ; 
solid line refers to a constant heat transfer coefficient (K = 0) and dashed line to a velocity- 
dependent heat transfer (K = 0.3) ; both lines give states of neutral stability according to a linear 
stability analysis. 

strong effect of a on the stability bounds P*, PT and /3$ of the steady solution 
branches. This is demonstrated in figure 4 where the curves of neutral stability are 
given in the (a,P)-plane for the symmetric heating condition 6 = 0". 

We consider first in figure 4 the neutral stability curve for K = 0. This curve 
corresponds to the situation of a constant heat transfer coefficient, which is a basic 
feature of the Lorenz model (see Lorenz 1963). The graph displays the Hopf points 
/3* as a function of the parameter a. This curve is given by the analytical relation 

All points below the curve represent states of stable steady convection, while for all 
points above the P*(a) curve a time-dependent flow results. 

A detailed study of the eigenvalues reveals purely real eigenvalues for a < 2 and 
a pair of complex eigenvalues for a > 2. Therefore the singularity of the function (12) 
a t  a value a = 2 separates asymptotically stable behaviour for a < 2 from oscillatory 
stable or unstable behaviour for a > 2 .  Physically, small values of a correspond to an 
extremely good heat transfer a t  the fluid/wall interface. A stable flow for any 
parameter combination P, a < 2 is therefore predicted for such conditions because 
any temperature disturbance is immediately suppressed. This prevents a feedback of 
such temperature disturbances after one cycle and leads to exponentially decreasing 
disturbance amplitudes. 

These results concerning the Lorenz model agree with those reported by Robbins 
(1977) in a different physical context. Robbins also investigates numerically the 
dependence of the homoclinic bifurcation point on the fluid/wall parameter a. We 
discuss this aspect in $4. 
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Fiat-RE 5. Stability diagram for the onset of time-dependent flow for non-symmetric heating, 
6 = 10' ( K  = 0) ; solid lines give states of neutral stability according to a linear stability analysis. 
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Next we consider the effect of the more realistic heat transfer law, equation (6). 
The parameter K only weakly affects the steady-state solutions, but has a strong 
influence on their stability bounds ,!I;. In  figure 4 the result of a linear stability 
analysis is given for a value K = 0.3. We see from figure 4 that the critical heating 
rate for the onset of time-dependent flow is given by values p; > p*. This clearly 
indicates a stabilization of both steady solutions for K = 0.3 compared to the case 
K = 0. Moreover, the range of asymptotic stability is increased, as the singularity in 
/3:(a) moves to values a > 2 .  Thus, an improved heat transfer a t  the fluid/wall 
boundary due to increased flow strongly stabilizes the steady convective flow. 

A stability diagram of the steady solutions for a case of non-symmetric heating 
with 6 = 10" is given in figure 5. The curves are given for a constant heat transfer 
coefficient h,  with K = 0. Since the stability bounds of the two steady convective 
solutions with opposite flow directions have different values p,* and p;, two curves 
p;(a) are presented in figure 5. The upper one represents states of neutral stability 
related to the preferred steady solution. The lower curve givcs the states of neutral 
stability relafied to  the isolated steady solution. Thus the (a,P)-plane in figure 5 is 
divided into four regions. In region I, characterized by a 5 2 ,  the convective flow is 
asymptotically stable. In region 11, stable steady convection can exist in either a 
clockwise or counterclockwise direction. Region I11 admits only the stable convection 
in the preferred counter-clockwise direction, determined by the non-symmetry 
parameter 6. No steady convection occurs for parameters a,P in region IV. 

3. Experiments 
3.1. Experimental set-up 

The experimental set-up consists of a circular glass loop of radius 1 = 31.3 cm and 
tube diameter d = 1.7 cm. We use water as a test fluid yielding a fluid/wall 
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parameter of a w 15. The parameter a is determined in the actual test apparatus by 
measuring the friction coefficient fw(u) as well as the heat transfer coefficient hw(u) 
for forced convection in a reasonable range of flow rates. From these measurements 
the heat transfer correlation gives K % 0.35 (see (6)). A detailed description of the 
preliminary measurements is given in $3.2. 

The wall temperature of each quarter-circle of the tube is controlled separately, 
giving a temperature distribution along the tube walls which is a step function. This 
is achieved by circulating water through coaxial jackets a t  high volumetric flow 
rates, with a typical accuracy of about k0.05 "C in the controlled wall temperatures. 
Moreover, we have to account for a deviation from the ideal circular loop geometry 
because straight pieces of tubes of length As = 13.0 em have been used as connecting 
parts between two semicircular glass tubes. These connections are arranged a t  'p = 
90" and 'p = 270". The experimental set-up is shown in figure 6, in which the position 
of the water jackets is given by the dotted areas. In  three experiments, the non- 
symmetry angle of heating, 8, is adjusted to 6 = O", S = 10" and S = 15". 

As can be inferred from $2.1, the leading-order Fourier coefficients of the wall 
temperature distribution Q1 and R, determine the angle of symmetry 6. Thus the 
inclination of the heated and cooled sections within the gravitational field proves to 
be equivalent to the establishment of an odd wall temperature distribution (Q1 $: 0). 
In  order to obtain a non-symmetric heating configuration, S + 0, we therefore adjust 
the wall temperatures within the separately controlled quarter circles accordingly 
rather than rotate the whole test apparatus. 

The deviation of the experimental geometry, because of the form of the connecting 
parts, from the ideal case can be taken into account. For that reason we recall the 
treatment of the basic equations ( l ) ,  which have been integrated once around the 
loop within Galerkin's method. If we account for the vertical straight pieces within 
the integration of the momentum equation we obtain 

It is justifiable to consider those sections as thermally insulated, since, except for a 
hole of 2 mm in diameter for velocity measurements, these tubes are surrounded by 
insulating material during the experiment. For that reason the heat transport 
equation remains unchanged, while we have constant average temperatures along 
these adiabatic vertical segments. We introduce an adapted scaling for the 
temperature coefficients XI and C ,  as 

while the other quantities remain scaled according to  (5) .  Using a procedure 
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FIGURE 6. Sketch of the experimental set-up. 

analogous to that in 52.1 we obtain the approximate set of ordinary differential 

Herein an effective heating p, occurs as modified parameter, which is defined by 

AS 1+2- 
7Cl 

A8 
1+- 

7C1 

P. P e  = ~ 

We therefore conclude that by using the appropriate scaling and parameters the 
experimental set-up is a physical representation of the employed model equations 
(8). 

The measuring equipment includes a laser Doppler anemometer (LDA) for 
monitoring the flow velocity u K x,, and thermocouples of 0.1 mm in diameter for 
measuring the horizontal and vertical temperature differences inside the loop, 
(q- T9) and (T12- T6). We employ a helium neon laser (632.8 nm), two Bragg cells 
operated with a shift of 25 kHz and a photomultiplier positioned in the forward- 
scatter direction within the optical part of the LDA. Burst analysis is performed by 
means of a transient recorder in conjunction with a 289 microcomputer on the basis 
of 'zero crossing detection '. Thermocouple voltages are amplified differentially using 
high-performance differential amplifiers. The typical resolution achieved is 
k0.02 cm/s for the velocity and k0.05 "C for the temperature differences. With the 
aid of these temperature differences the basic modes of the temperature distribution, 
x2,x3, can be evaluated. All experimental data are taken in the centre of the cross- 
section A of the pipe. Based on preliminary measurements of velocity and 
temperature profiles along the diameter of the tube we are then able to estimate the 
average value of a quantity on the basis of the local centre value (compare 53.2). The 
overall configuration of local velocity and temperature measurements prove to  
resolve frequencies of up to 2 Hz for the case of the LDA and frequencies up to 30 Hz 
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for the case of thermocouples. Both cut-off frequencies are considerably higher than 
any observed frequency in the experiment. In addition to the local measuring 
techniques outlined above, we occasionally used tracer material and a laser-light- 
sheet met,hod to visualize three-dimensional flow structures in certain sections of t,he 

In order to  allow a comparison of our experimental procedure with other 
procedures, i.e. of Creveling et al. (1975), Damerell & Schoenhals (1979), Gorman 
et al. (1986), we give some typical experimental ranges of the physical quantities. The 
temperature differences AT between heated and cooled wall regions lay in the range 
0 d AT d 52 O C ,  while the heat flux qw established per unit wall area varied within 
the interval 0 < qw < 0.56 W/cm2. The variables of state were measured within the 
ranges -4.5 < u d 4.5 cm/s, - 12 d (T,--T,) d 12 "C and finally - 5  d ( q 2 - T 6 )  < 
2 "C. Under time-dependent conditions the main frequency of oscillation f is usually 
very close to the frequency given by a particle travelling with the mean velocity u 
around the loop. The measured data on the basis of power density spectra lay in the 
interval 3 < f  < 19 mHz. 

All of the experimentalists cited above applied a constant heat flux on the bottom 
half-circle of the loop, while the top half-circle was maintained a t  a constant 
temperature. The diameters of the flow channels used by them were 3.0 cm and 
2.1 cm, respectively. We have, in contrast, used a smaller tube diameter of 1.7 cm in 
order to decrease the thermal diffusion time across the flow channel. Gorman et al. 
report a fluid/wall parameter in the range 3.1 d a d 4.9 in their experiments. 

loop. 

3.2. Preliminary studies, experimental procedure 

In 52.1 we introduced correlations for the friction term fw and the heat transfer 
coefficient h, into the model. These correlations are both based on a forced flow 
within a circular straight tube. Therefore they are strictly valid only for equivalent 
conditions. I n  order to obtain correlations valid in the actual test apparatus we open 
thc loop a t  a position rp = 90" and provide a flow with adjustable me,an velocity 
cntering the test section smoothly through a straight tube of 1 m length and the same 
inner diameter. The fluid circulates around the loop and leaves the test section via 
a straight piece of tube. The average flow velocity is measured precisely by weighing 
the emerging fluid during fixed time intervals using a high-resolution electronic scale. 
The entrance fluid temperature is thermostated and the thermally non-active parts 
of the tubes are insulated. We use the same overall average fluid temperature in both 
the preliminary and the ordinary measurements, i.e. 30 "C. The differences of average 
temperature and of pressure between inlet and outlet are monitored by platinum 
resistance thermometers and a capacitive pressure transducer, both operated 
differentially. 

The results from those measurements are given in figure 7,  showing the pressure 
loss (a fw)  and the heat transfer coefficient (cch,) both as function of the flow rate 
(ccu). We have also included in the diagrams the correlations obtained from 
regressing the experimental data to a form as introduced by (2) and (6). Thus the 
constants from those model equations, namely fwo, hwo and K ,  are determined. Both 
dependencies prove to describe reasonably well the behaviour of the experimental 
data, Although we have accounted for the curved geometry of the tubes as present 
in the test apparatus, we point out that those correlations do not include any effects 
from three-dimensional flow patterns, probably caused by the natural convection. 
Very little quantitative information on such effects is available, however. 

During our experiments we intend to perform steady and time-dependent 
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FIGURE 7. Preliminary measurements on the friction and heat transfer law in the actual test 
apparatus. A and 0 respectively give measurements using a positively or negatively oriented flow, 
8oIid lines give regressed model correlations. 

measurements on the cross-sectionally averaged flow velocity and temperatures a t  
certain positions, In  order to  obtain continuous and sufficiently time-resolved 
information we employ local measurements in the centre of the cross-section A ,  
rather than scanning the cross-section a t  every time step. For that reason we have 
to provide a method allowing an estimation of the average value of a quantity if the 
value in the centre of A is given. The assumption of parabolic profiles across A 
obviously does not hold, since the curvature of the tubes establishes significantly 
different profiles in both temperature and velocity a t  certain positions. 

For a set of 16 typical heating rates p we therefore perform a priori velocity and 
temperature measurements along the diameter of the tube at every probe position, 
and for both directions of the mean flow. From these data we are able to obtain 
correlations between the local centre value and average value of a quantity as 
function of the heating rate /?. We use regression polynomials to generate analytical 
expressions for those correlations and to extrapolate them slightly towards lower and 
higher values of the heating rate p. Using these polynomials later in the ordinary 
measurements we can estimate the average value of a quantity on the basis of a 
measurement of the local centre value in a most accurate manner. 
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FIGURE 8. Measured velocities for symmetric heating (6 = 0') : A and 0 give steady states, vertical 
bars mark maximum amplitudes of time-dependent flow, solid lines represent theoretical results for 
steady solutions and 0 mark their stability bounds (theoretical parameters a = 15,6 = 0, K = 
0.35). 

Finally we give a description of our method employed to find various bounds of 
stability. We use an extremely careful step-up procedure on the heating rate ,8 
(temperature difference AT) for typically a t  least three times in order to detect the 
highest value of the heating rate for which a steady stable flow is observed. Thus this 
method should provide an experimental equivalent jl,*,, to  the theoretically obtained 
value p*. The lower limit of a subcritical range, namely pHo or BLp, is experimentally 
approached in three different ways. First, a change of the heating rate /3 in major 
steps proves to introduce large perturbations. Secondly, a complete blocking of the 
flow for typically 10 to 15 minutes is used in order to generate large perturbations. 
This is achieved by means of a metal sheet inserted between the two semicircles just 
in the vertical connecting parts. Finally, a step-down procedure starting from an 
oscillating flow in the supercritical range is always employed until a transition to a 
steady stable flow is observed. We take the lowest value of the heating rate p where 
time-dependent flow is observed to  be the lower bound of the subcritical region. 
Mostly this value results from the first method, i.e. from a variation of /3 in major 
steps. 

Gorman et al. (1986) have used, in addition, an indirect experimental method to 
obtain information on the structure of the strange invariant set. In  particular they 
use the time intervals between flow reversals as an indicator to determine whether 
or not the system tends to fall into a stable steady operation. Our experimental 
results do not allow for such a distinction. 

3.3. Experimental results for symmetric heating 
For a direct comparison between the model predictions and the experimental 
observations the dimensionless measured flow velocity, x1 K u, is given as a function 
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FIGURE 9. Example of a time history recorded in the stable steady range; curves correspond to 
.li cc x1 and (T,-T,) cc x2, s indicates the offset of recorder. 

of the measured heating rate p oc AT. Thus, figure 8 corresponds completely to the 
theoretical results for symmetric heating, given in figure 2. The experimentally 
observed steady states and the predicted steady states, including stability bounds, 
are given in figure 8. 

In agreement with the theory, we find, in a small region 0 Q p Q pOexp, a state of rest 
without any circulating flow in the loop. This state obviously admits only diffusive 
heat transport from the high- to the low-temperature region in the loop. An increase 
of the heating rate /3 above a first critical value pOexp, results in a steady convection 
flow in either a clockwise or counter-clockwise direction, depending on the initial 
perturbation. When the experiment is carefully conducted by increasing p in 
sufficiently small steps, a steady flow persists up to a heating rate pzXp indicated by 
dashed-dotted lines in figure 8. For values ,8 > /3zxp a time-dependent fluctuating flow 
is observed for any size of disturbance affecting the flow. The maximum variation of 
the velocity x1 of such time-dependent convection is marked in figure 8 by vertical 
bars. 

Thus we find reasonable agreement between the predicted flow rate x1 and the 
measured data for the steady convection in both flow directions. There is a 
discrepancy between the predicted and the observed bounds of linear stability for the 
steady flow ; we have /3* > Bzxp. We conjecture that this discrepancy is on one side 
due to the differences between the assumptions made in a linear stability analysis 
and the real experiment where perturbations of finite amplitude are usually present. 
We find also a difference in the two values /3,*,, for the flow in a clockwise and 
counterclockwise direction, which indicates a small, but unidentified, asymmetry in 
the experimental set-up. On the other hand, the theoretical stability bound p* 
depends strongly on K ,  the parameter in the heat transfer law. Therefore an 
inaccuracy in the experimentally determined value could also explain the present 
discrepancy . 

Next we outline some typical nonlinear features of our experimental observations. 
We discuss three typical experimentally recorded time histories of the temperature 

I7 FLM 217 
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FIGURE 10. Example of a time history in the subcritical range; curves correspond to AT K p 
and (q- T') K x 2 ,  s indicates the offset of recorder. 

and the velocity, and compare theoretical predictions. Figure 9 illustrates a 
transition from one steady state of convection to  another steady state at an elevated 
level of the temperature differencc AT oc p. This transition is initiated by a sudden 
stepwise increase of the driving temperature difference AT. It can be seen that, a few 
minutes after the significant change in /3 a t  time t = 0, the state variables ti K "cl and 
(T,-T9) a x2 adjust, via a stable oscillatory transient, to new stationary conditions. 
We have established in repeated tests that, independent of the size of the applied 
temperature increment, only stable steady flow results in a range of moderate values 
of p. In figure 8 the measured states in this flow regime are denoted by the symbols 
A and 0 without a vertical bar. 

A typical temporal behaviour of the system in the subcritical region is shown in 
figure 10. After a major ramp-type increase of the heating rate p oc AT starting a t  
t = 0, we observe an oscillatory temporal behaviour of the measured temperature 
difference (E-T , )  K x2 for an extended period of about 700 min. Then without 
changing the external parameters of the system a spontaneous relapse into the 
steady state occurs. We can also realize the identical steady state if we increase p in 
several sufficiently small steps. By such a procedure the oscillatory temporal 
behaviour is avoided and the final steady state is established via a sequence of stable 
oscillatory transients. Figure 10 thus illustrates the two observed states that may 
occur in the subcritical range for small and for finite-amplitude perturbations at  
identical values of the heating rate p. The subcritical region realized in the 
experiments is in fact characterized by the possible occurrence of a steady or 
alternatively an oscillatory flow. In figure 8 this dual state is indicated by the 
combined symbols for steady and time-dependent flow. The expcriments also 
demonstrate the potential transition of the system from an oscillatory state to a 
steady state in the long term. This particular phenomenon, however, does not 
necessarily occur in finite measurement intervals and is rarely observed during the 
experiments. 

In  figure 11 we present, as a typical sample of our history records, the temperature 
difference (T3- T,) a x2 in the absolutely unstable range /3 > /3&. In  agreement with 
our theoretical conclusions we observe a chaotic time behaviour independent of the 
sampling interval. The changes in the sign of the temperature difference (T,  - Tg) at 
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FIGURE 1 1 .  Example of a time history in the absolutely unstable range ; curves correspond to 
AT cc and (!l!-T,) cc x2. 

certain times are linked to reversals of the flow direction in the loop occurring a t  
random increments of time. This can be explained with the aid of figure 6. The 
temperature difference (q - T’) is measured between the vertical sections of the loop. 
Since a flow, e.g. in the counter-clockwise direction, will transport hot fluid to the Tg 
while cold fluid passes the T3 position we observe (T3-T,) < 0. Accordingly, for flow 
in a clockwise direction we find (T, - T9) > 0. 

We note here explicitly that we observed self-induced flow reversals only for very 
high heating rates of /3 2 120. In  the range of /3,*,, < /3 < 120 a flow with chaotic time 
behaviour and flow reversals could only be generated by major external excitations, 
e.g. large sudden jumps in the heating rate. Without external perturbations we find 
oscillatory flow with random character and bounded amplitudes in either a clockwise 
or counterclockwise direction. The time behaviour of the flow therefore does not 
indicate any flow reversals and it resembles the behaviour obtained during oscillatory 
portions within the subcritical range (compare figure 10). 

It is important to notice that in both cases where limited-amplitude oscillations 
are observed, i.e. in the subcritical region and the moderate-supercritical region, an 
explanation of the dynamics purely on the basis of the Lorenz model is not possible. 
We find, however, that the power density spectra of the signals observed in those 
regions are similar to  those spectra expected from the Lorenz model as far as the 
lower frequency range, associated with the mean motion, is concerned (see Ehrhard 
1988). However, those spectra, in addition, contain large portions of power within 
considerably higher frequencies, which cannot be explained by the one-dimensional 
model. 

We attribute the delayed occurrence of the oscillatory convection with flow 
reversals in both the subcritical and the moderate supercritical range to local two- 
and three-dimensional flow perturbations, which change the overall friction losses 
and reduce buoyancy by levelling out temperature gradients. I n  fact using a laser- 
light-sheet method and tracers we have identified zones of recirculating flow a t  the 
inboard side of the vertical sections of the loop (see Ehrhard 1988). These 
recirculation zones are observed in all states of convection. However, they affect the 
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otherwise mainly one-dimensional flow severely only when large-amplitude oscil- 
lations occur. The above arguments are supported quantitatively by comparing the 
power density spectra which are obtained from a direct numerical integration of the 
model equations (8) with the experimentally recorded temperature histories. In  
figure 12 we give a typical set of signals x3 and related spectra, obtained in the 
moderate-supercritical range. I n  both the theoretical and the experimental cases we 
first compute the autocorrelation function in the time domain and from this we 
obtain the power density spectra via a Fourier transformation. A fourth-order 
Runge-Kutta scheme is used for the direct numerical integration of (8).  We confirm 
from figure 12 corresponding peaks in the experimental and theoretical spectra at 
9.8 mHz and 9.57 mHz. A major portion of power in the range 30-120 mHz, 
however, is present in the experimental spectrum, which presumably is due to locally 
three-dimensional flow pattern. Ehrhard (1988) shows, moreover, that  in addition to 
the contribution of the mean-flow oscillations a t  relatively low frequencies, an 
increased contribution of higher-frequency oscillations to the power density spectra 
is obtained by measuring inside those recirculation zones in the absolutely unstable 
range. 

Our observations have some features in common with the experimental findings of 
Creveling et al. (1975) and Gorman et al. (1986). These authors performed similar 
experiments in a symmetrically heated circular loop with a constant wall heat flux 
in the lower and constant wall temperature in the upper semicircle of the loop. At 
moderate heating rates, two steady convective flows, one clockwise, the other 
counter-clockwise, are observed by all investigators. At high heating rates, they all 
find oscillatory flow of chaotic character exhibiting global flow reversals a t  times. 
Creveling et al. report that  they realize an intermediate stable unsteady state with 
periodic temperature oscillations. It may be conjectured that this oscillatory state 
observed by Creveling et al. corresponds to the subcritical oscillatory states which 
Gorman et al. and ourselves' find, if finite-amplitude disturbances act on the 
convection. Gorman et al. attempt to explain the 'stable oscillations ' of Creveling 
et al. by a 'crisis' theory of Greborgi, Ott & Yorke (1982) but admit that  they were 
unable to measure any characteristics of this particular theory. They also suggest 
that  in the subcritical range of heating rates, the oscillatory states should be 
subdivided into states of ' transient chaos ' and ' subcritical chaos ' depending on 
whether, after some residence time in the chaotic state, the system returns to the 
steady state or not. These authors use statistical means to support their idea. We 
have not particularly investigated the dynamical characteristics of the chaotic flow 
regime for /? 2 120, because the high heating rates for achieving permanent chaotic 
states could not be sustained for extended experimental times without risking 
damage to the set-up. Finally, the flow in our experiments stays, contrary to the 
observations of Creveling et al., laminar, but partly time-dependent, in the whole 
parameter range 0 < p 5 200. This is also clearly confirmed by the measured friction 
lawf,(u), which retains a strictly linear dependency up to the highest measured flow 
velocities. This difference is obviously due to  the different diameter of the tube used 
by Creveling et al. 

3.4. Experimental results for non-symmetric heating 
Experiments have been conducted for two different non-symmetry parameters 8, 
namely 6 = 10" and 6 = 15'. The results of the first experiment using a non- 
symmetric heating configuration with 6 = 10" are shown in figure 13. The 
experimental data corresponding to the continuous branch of the steady solutions 
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FIGURE 13. Measured velocities for non-symmetric heating (8 = 10"); A and 0 give steady states, 
vertical bars mark maximum amplitudes of time-dependent flow, solid lines represent theoretical 
results for steady solutions and 0 mark their stability bounds (theoretical parameters: a = 15, 
6 = 10",K = 0). (Theoretical stability bounds: p: = 10.8,/3,* = 41,.8,pH0 = 5.2,pLp = 41.4.) 

are obtained by a gradual increase of the driving temperature difference AT cc p. We 
find steady flow in the preferred direction in a range 0 d p d P:exp if a sufficiently 
smooth step-up procedure is used in the experiment. The isolated steady-state flow 
is established by initially introducing specific perturbations into the wall- 
temperature distribution. Once a state of steady convection of this isolated branch 
is obtained, other neighbouring steady states are generated by slowly increasing or 
decreasing the driving temperature difference AT cc /3. This is performed until the 
bounds of stability of this isolated steady-stat'e flow are identified. 

The experimental data for both states of convection are given in figure 13, and it 
can be seen that both data sets follow closely the two branches of the steady solutions 
predicted by the model. The experimental data on the steady flow with preferred flow 
direction indicate a t  low values of the heating rate velocities close to zero, although 
the temperature measurements (TI, - T,) and (q - Ts) clearly confirm the presence of 
a positively directed flow. We attribute this discrepancy to the method of evaluating 
the average velocity employed. Particularly at very small mean velocities, 
superimposed three-dimensional patterns may cause a considerably reduced value of 
the local velocity in the tube centre, which is used as the basis of this evaluation. 

For values of /3>/3gexp we find only time-dependent oscillatory flow. The 
maximum and minimum amplitudes occurring in this time-dependent regime are 
indicated by vertical bars in figure 13. The temperature records from our experiments 
do not indicate any global flow reversal in certain time intervals for p > P:exp. The 
theoretical results of figure 3 admit such reversals in principle. We attribute this 
discrepancy in our case once more to the increased dissipative effects of the local 
three-dimensional flow disturbances occurring - according to our observations - with 
higher intensity a t  higher values of the heating rate. In their experiments, Damerell 
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FICCRE 14. Example of a recorded transition from the subcritically unstable isolated steady state 
with clockwise flow direction to the preferred counterclockwise flow (6 = 10") ; the curve corresponds 
to  (T,-T,) cc x2. 

& Schoenhals (1979) have observed a limitation in the occurrence of oscillatory flow 
reversals for non-symmetry parameters IS1 < 6". They also report observations of 
two- and three-dimensional flow effects, to which they attribute indirectly the 
limitations of the flow oscillations. In  particular they find that the evaluated 
volumetric flux in the loop is reduced by these effects. The basic features of such 
three-dimensional effects in a toroidal convection loop have recently been analysed 
numerically by Lavine, Greif & Humphrey (1987). The results of these authors 
qualitatively confirm the experimental observations. 

We can also generate time-dependent oscillatory flow in a subcritical range of 
heating rates /3 < /3:exp if we introduce a perturbation of a large enough amplitude 
into the system. Usually, this is achieved by varying /3 in large steps. The extension 
of the observed subcritical region is recognized in figure 13 by the symbols for both 
steady and oscillatory convection. 

The experiment confirms furthermore that the isolated branch of the steady 
solutions is bounded on both sides. We observe a transition of the clockwise-directed 
convection to a counter-clockwise flow when /3 reaches a lower and upper bound on 
the isolated branch. In  figure 13 the experimental transitions are represented by two 
vertical bars which connect both branches of steady states. As a typical example 
figure 14 illustrates the transition process a t  the upper stability bound at a value 
p = p:exD by a temperature history record. The record of the temperature difference 
(q - T9) shows the manner in which the subcritically unstable, oscillatory, clockwise 
flow changes into a stable, steady flow with counter-clockwise orientation. This 
process is thus associated with one single flow reversal, since the sign of the 
temperature difference (8 - T9) depends strictly on the flow direction. 

We conclude that the experiment with 6 = 10" exhibits most of the essential 
features of the model. In  particular, we find an imperfect bifurcation of the steady 
solutions including an isolated steady state as well as a preferred state of convection. 
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The experimental validation of existing subcritical instabilities strongly supports the 
existence of two backward-bifurcating, unstable periodic solutions, as predicted by 
the model equations (8). Moreover, there is a reasonable quantitative agreement 
between theory and experiment for the stability bounds /3T and /3:. 

The second experiment is performed with a larger non-symmetry parameter, i.e. 
6 = 1 5 O ,  in order to verify the theoretical prediction of a forward-directed bifurcation 
of the r-periodic solution a t  the Hopf point p: of the preferred branch. For this 
particular situation a stable, time-periodic flow should arise in the loop for heating 
rates p > p;'. 

The experiment with a non-symmetry angle of 6 = 15' confirms mostly the 
predictions of the model for larger parameter values 6. The convective flow in the 
preferred positive pdirection is clearly stabilized when compared to the first 
experiment with a moderate non-symmetry of 6 = 10". The heating rate for the onset 
of oscillatory flow is clearly shifted to  a value /3:exp, 150 > Pzexp, loo. The experiments 
give Ptexp,  15' = 64.2 and E e x p ,  100 - - 31.7. This implies that  the stable range of the 
isolated branch is reduced and the transition to the preferred state of flow occurs a t  
a heating rate /3Texp, 150 < prexp, loo; here /ITexp, 150 = 7.0 and /3Texp, = 10.2. The 
displacements of the stability bounds /3T and p:, as well as the general character of 
the steady solutions, are in reasonable agreement with the theoretical findings. 

However, contrary to  the predictions of the model, we cannot realize ex- 
perimentally a stable time-periodic flow. Instead we find a small range of heating 
rates p ,  where the steady states exhibit subcritically unstable features if sufficiently 
large perturbations are imposed to the flow. We also find that the extension of this 
subcritical region is smaller by a factor of 0.16 compared to the subcritical interval 
in the case of moderate non-symmetry (see figure 13). Thus the experiments support 
qualitatively the theoretical result that  increasing non-symmetry will reduce the 
extent of the subcritical range and eventually turn the backward bifurcation into a 
forward one. We observe an oscillatory flow for P > /?:exp, which clearly is not of 
periodic character. The observed oscillations of the temperature history agree 
qualitatively with those illustrated in figure 11. In  summary, we again observe in this 
experiment most of the features related to  a backward bifurcation of the unstable 
periodic solution from the steady state. During the measurements a t  higher heating 
rates p, i.e. for values p 2 80, however, we observe a considerable deviation of the 
actual wall-temperature distribution from the intended step function. Specifically 
the thermocouples in the coaxial water jackets monitor a major difference between 
inlet and outlet, temperatures, which are due to the amount of heat transferred. Since 
this deviation reduces the effective non-symmetry parameter 6, a careful evaluation 
of the observations, especially in the supercritical range, does not provide a clear 
judgement of whether a backward or forward bifurcation from the stability bound 
of the steady flow, i.e. at /3 = p~exp,150, is present. 

4. Discussion 
As a detailed comparison between the calculated results from the analytical model 

and the experimental findings, we summarize thosc particular features of the model 
which are in principle observable in an experiment. We discuss them in the order of 
increasing heating rates starting with the symmetrically heated loop. We also 
compare our results with the results of other authors, if available. 

( a )  The model equations predict a stable state of rest (we term i t  a 'heat 
conduction solution ') in the range 0 6 /3 < for the symmetrically heated loop. This 
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FIGURE 15. Stability diagram for symmetric heating conditions. Theory: thick solid lines refer to 
stability bounds according to a linear perturbation analysis, thin solid line represents nonlinear 
calculations of Robbins (1977) for the heating rate at the homoclinic orbit, indicates present 
results at the homoclinic orbit (parameters: 6 = 0, K = 0). Experiment: [7 indicate onset of 
convection, mark the first occurrence of subcritical instabilities, 0 indicate the limit of the 
absolutely unstable range. 

behaviour of the system is confirmed by the experiments, since there is a range of 
heating rates where no convection is observed in the loop. The observed onset of 
convection reported by Gorman et al. (1986) for different values of the fluidlwall 
parameter a in the range 3 < a < 5 and also our measurements for a = 15 indicate 
that there is no significant dependency of the critical heating rate for the onset of 
convection on the parameter a. I n  figure 15 these data are indicated by symbols 0 
in a stability diagram plotted in the (a,P)-plane. The observations are therefore 
compatible with the theoretical results predicting the onset of convection at  a value 
/3O = 1 (solid line). 

(a) At p = /3O = 1 the model predicts a forward bifurcation into two symmetric 
branches of stable steady convection. These solutions correspond to either clockwise 
or counterclockwise flow. The experiments confirm these predictions, since, 
depending on the value of a small initial perturbation, a flow is established in one or 
the other direction. Repeated step-up procedures do not lead to a significantly higher 
probability for the occurrence of one or the other state of flow. The experimental 
data for the onset of convection during repeated runs lay within an interval bounded 
by two identical symbols 0 in figure 15. Moreover, the measured steady mean 
velocities for each state of convection agree reasonably well with the calculated 
values. This holds also for the temperature distribution, represented by x2 and z3, as 
reported by Gorman et al. (1986) and Ehrhard (1988). 

( c )  A transition to time-dependent chaotic flow is predicted a t  the stability bounds 
p* of the steady solutions. The corresponding experimentally determined values PZx, 
exceed the theoretical values of the model based on a constant heat transfer law with 
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K = 0. This can be seen in figure 15 by comparing the experimental data pZx, 
(symbols 0) with the theoretical values given by the curve of neutral stability p*(a) 
(upper solid line). This has also been found by Gorman et al. (1986) in their 
experimental investigations. The data of these authors are also depicted in figure 15. 
Our theoretical analysis shows that a more realistic heat transfer law, equation (6), 
increases the critical heating rate /3* for the onset of time-dependent flow (see figure 
4). For this reason we conclude that the implementation of the proposed heat 
transfer law (6) for the laminar flow regime (see in figure 8) improves the description 
of the actual flow and results in better agreement between theoretical and 
experimental data. We attribute the remaining discrepancies to an inaccuracy in the 
experimentally determined value K x 0.35. We have already determined in the 
theoretical analysis (see $2.5)  that the stability bounds are extremely sensitive to this 
parameter K in the heat transfer law (6). 

An increase of the critical heating rate p* is similarly reported on theoretical 
grounds by Yorke st aE. (1987). These authors find that by retaining radial diffusion 
terms in both momentum and heat transport equations, the solutions indicate a 
Hopf bifurcation a t  a considerably higher value of the heating rate. As the number 
of radial modes in their model is increased, they report convergence of the 
truncation. Thus the highest given mode (N  = 5) should represent a good estimate of 
the location of the Hopf bifurcation and their figures read as p*(a = 14) x 85, 
P*(a = 16) x 97. These values are both far too high compared with our experimental 
findings. We conjecture that this discrepancy arises from the fact that, owing to  the 
considerable curvature of the tube in our experiment, the velocity and temperature 
profiles in the cross-section A depart strongly from the axisymmetric shapes present 
in the model of Yorke et al. Thus their results need to be carefully interpreted when 
applied to a geometry with considerable curvature of the tube axis. 

For values /3 > /3& we find unsteady convection, as also reported by other authors 
(see e.g. Creveling et al. 1975; Gorman et al. 1986). According to the model equations, 
in the supercritical range, chaotic oscillations with intermittently growing ampli- 
tudes occur, resulting in repeated global flow reversals in the loop. In  the moderate 
supercritical range of our experiments we observe irregular flow oscillations of 
limited amplitudes ; however, no flow reversals occur in this range. Flow reversals are 
obtained in our experimental set-up without any external excitation only a t  very 
high supercritical heating rates. We ascribe this quantitative discrepancy between 
theory and experiment to  the strong dissipative mixing effects caused by locally 
three-dimensional flow disturbances, including flow separation in the vicinity of the 
vertical parts of the test section. Such recirculating flow structures have also been 
reported by Damerell & Schoenhals (1979) and Stern & Greif (1987). 

(d )  The experiments confirm the existence of a range of subcritical instability of 
the steady convection. I n  this particular range a steady convection is permanent if 
external perturbations remain sufficiently small. For finite-amplitude disturbances, 
however, the system undergoes a transition to an oscillatory behaviour which affects 
all the variables of state. This behaviour may be of transient character, since the 
coexistence of a stable steady flow implies a finite probability for the system to 
return to a steady stable operation. In figure 15 the onset of a subcritical instability, 
as measured by Gorman et al. (1986) and as obtained in our experiments, is given by 
the symbols 0 .  For comparison the numerical results of Robbins (1977) are also 
plotted as a thin solid line which fits our own theoretical values pHo (symbols a )  

perfectly. It can be seen from figure 15 that  all the experimental values exceed those 
obtained by calculations using the model equations. 
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For a non-symmetrical arrangement of heat sources and sinks in the loop, the 
model equations predict an imperfect bifurcation of the steady solutions from the 
state without motion. The structure of this bifurcation is connected with the 
Occurrence of one preferred steady convective flow which maintains stability up to 
higher heating rates compared with the symmetric case. The steady flow in the 
opposite direction has only a limited range of stability and is not connected to  the 
origin of zero heating rate. Both features are confirmed by our experiments as shown 
in figure 13. Darnerell& Schoenhals (1979) have likewise investigated these effects in 
their experiments. As far as the preferred state of flow originating from p = 0 is 
concerned the authors report corresponding observations, but, since detailed data 
\yere not given by these authors, a quantitative comparison with our results is not 
possible. Our experimental realization of the stable steady flow corresponding to the 
isolated branch of solutions is further strong support for the validity of the model 
equations (8). In this particular closed-loop geometry the isolated solution in the 
non-symmetric case has, to our knowledge, not been observed before. However, Bau 
& Torrance (1981) report a similar phenomenon in an asymmetrically heated open 
convection loop of rectangular form. Our theoretical results for the case of non- 
symmetric heating and cooling of the loop are in agreement with results reported by 
Hart (1984). Hart has performed an investigation of the model equations (8) with 
S =t= 0 and K = 0, and finds a continuous and an isolated branch of steady solutions. 
Csing a linear perturbation analysis he obtains equivalent results for the stability of 
the steady solutions. As far as we know a detailed nonlinear bifurcation analysis of 
the model equations (8) for a non-symmetry parameter 6 =t= 0 has not previously been 
presented. 

(f ) Our calculations indicate that for increasing non-symmetry parameter S the 
backward-directed bifurcation of the periodic solution a t  the Hopf point evolves 
continuously into a forward-directed one. This implies that a stable range of time- 
periodic flow exists for heating rates beyond the critical value p,*. We did not succeed 
in verifying this theoretical result in our experiments but the differences in the 
extension of the subcritical regions in our two non-symmetric experiments indicate 
that there is clear trend towards a smaller subcritical range when the non-symmetry 
angle 8 is increased. We interpret this effect as an indication of the complete reversal 
of the direction of bifurcation of the periodic solution if an even stronger non- 
symmetry is imposed on the system. 
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